Troubleshooting Brewhouse Efficiency

From German brewing and more
Revision as of 03:26, 13 August 2008 by Kaiser (Talk | contribs) (Measuring Volume)

Jump to: navigation, search

Work in progress

This article is intended to provide a systematic approach to indentify and fix brewhouse efficiency shortcomings.

Calculating Efficiency

Before we can look for efficiency shortcomings and their causes we need to determine the efficiency. Since a number of different definitions for efficiency exist, it is possible that the actual efficiency is in a acceptable range but was calculated based on a different efficiency formula that returned a lower result. Other error factors are incorrect gravity or volume measurements.

In this analysis we will use the brew house efficiency into the boil kettle. That efficiency is the same at the beginning and end of the boil since no extract is lost during the boil. Efficiency shortcomings after the boil (i.e. transfer to the fermenter) are obvious as they are proportional to the amount of wort that is left behind in the boil kettle. For a list of various efficiency definitions see the article Efficiency.


Before the efficiency can be calculated, 3 things need to be measured on brew day:

  • amount of grain used
  • specific gravity of the collected or finished wort
  • volume of the collected or finished wort

It is important to be reasonably accurate when measuring these values. The more precise the measurements are. the more precise the calculated efficiency will be. As an example: If the grain weight has an error of 5% (which is +/- 200g for a 4.0kg grist or 0.5 lb for 10lb), the calculated efficiency will also have a 5% error, i.e. a calculated efficiency of 70% could actually be between 65% and 75%. The same applies to volume and gravity measurements.

The following measurement errors can be seen as reasonable:

  • 1% error for the grain weight. This means +/- 40g for a 4.00 kg grist or 0.1 lb for 10 lb
  • 2% error for the specific gravity. This means +/- 0.25 for 12 Plato or +/- 1 point for 1.050 SG
  • 2% error on the volume measurement. This means +/- 0.5 on 25l or +/- 0.5 qt on 6 gal

and with them the efficiency can be calculated with a 5% accuracy.

Check the hydrometer

If you have already checked the calibration of the hydrometer you can proceed to calculating efficiency

To check the hydrometer use it in water at the calibration temperature that is noted on the scale. In water the hydrometer should read 1.000 or 0.0 Bailling/Brix/Plato. If another reference point is desired, dissolve 40g of table sugar in 160g of water. The resulting solution has a extract content of 20 Plato or 1.083 SG. But such a 2 point calibration is generally not necessary for hydrometers.

If the hydrometer doesn't read 1.000 SG or 0.0 Plato in water, it doesn't have to be thrown out. Simply remember to always subtract the difference to 1.000 SG or 0.0 Plato from every hydrometer reading.


  • If the hydrometer reads 1.002 in water, subtract 2 gravity points (i.e. 0.002) from every hydrometer reading
  • If the hydrometer reads 0.998 in water, add 2 gravity points to every hydrometer reading

Measure Volume

When measuring volumes on brewday, the temperature based expansion of water should be taken into account and all measured volumes should be corrected such that they represent the volume at room temperature. And since wort is mostly water, what is true for water is also true for wort. At 100 C or 212 F a given amount of water/wort has about 4% more volume than at room temperature. This means that 25 liter or quart 100C/212F hot wort is actually 24 liter or quarts. This is a difference of 1 liter or quart and fairly significant for precise efficiency calculations. But because it results in more volume than actual, it results in a higher than actual calculated efficiency.

At mash and thus lauter temperatures ~ 70C / 160F the water/wort volume is only by about 3% larger than at room temperature.

Calculate efficiency

To calculate this efficiency two distinct approaches exist. The weight based approach calculates the weight of the extract that is present in the collected wort and puts it in relation to the total extract weight that was available in the grist. The gravity potential based approach puts the specific gravity that was achieved in relation to the maximum gravity potential that the grist has. Both approaches are explained below and either one can be chosen.

Weight based efficiency calculation

Gravity potential based efficiency calculation