The Science of Mashing

From German brewing and more
Revision as of 04:56, 24 November 2008 by Kaiser (Talk | contribs) (Enzymes)

Jump to: navigation, search

------------- Work in progress ------------

In mashing the milled grain (grist) is mixed with water to create the mash. It is an essential process in the production of beer and a continuation of the malting process on the way to sweet wort. During the mash soluble malt compounds like enzymes, proteins and sugars are dissolved by the mash water and insoluble malt compounds like starch and some long chained proteins are converted into soluble compounds and dissolved into the water. The latter happens through a combination of physical and biochemical process which can be controlled by the brewer to achieve a sweet wort of desired quality. The biochemical processes are catalyzed by various malt enzymes. Their function and behavior is dependent on the conditions in the mash (e.g. temperature, pH, concentration, etc.) and the brewer should be familiar with that behavior in order to control the quality of the sweet wort that is run off from the mash in the lautering process.

Enzymes

Enzymes are very important to mashing they catalyze conversion reactions which break down malt compounds (the largest one being starch). In the case of starch this conversion is necessary to form water soluble dextrines and sugars. The latter of which can be metabolized by the yeast. Enzymes are proteins (chains of amino acids) which have the ability to lower the energy needed for a chemical chemical reaction. Most enzymes are very specific to the reaction they catalyze and work only with a specific substrate and produce only a specific product. In case of the beta amylase enzyme, for example, the substrate a glucose chain and the product is maltose. The reaction that is catalyzed the the split of a glucose chain link while a molecule of water is consumed. The highly specific nature to the reaction that is catalyzes stems form the shape of the enzyme which is just right for reacting with the substrate and releasing the product and residual product shortly after. The enzyme itself is not consumed in the reaction. I.e. once free again it can catalyze another reaction.


  • what is an enzyme?
  • structure of an enzyme
  • how does it work
  • temperature affects on enzymes
  • idealized model for enzymatic activity
  • optimum temperature vs. time

Starch

  • where it is found
  • glucose and 1-4/1-6 branches
  • amylose
  • amylopectin
  • starch granule structure

Starch conversion

  • gelatinization
  • active enzymes
  • emzyme temperature and pH optima
  • mash parameters affecting conversion

Proteins

Other enzymes in mashing

Sources